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(CRFs) [4] to model this task since CRF performs very 
well in other text segmentation tasks such as paper ab-
stract segmentation [5]. We use the CRF++ package.  

3.4 Features  
We employ the following three features computed from 
the lyrics texts. 
 
Title appearance feature (TA). If the given paragraph 
contains the song title, its TA value is set to 1. Otherwise, 
if the given paragraph’s next paragraph contains the title, 
its TA value is set to 2. Otherwise, its TA value is set to 0. 
 
Prefix frequency rank feature (PFR). The value of this 
feature is set to the frequency rank of the given para-
graph’s two-character prefix if the rank is less than or 
equal to three. Otherwise, the PFR value is set to 0. 
 
Rank of paragraph length feature (RPL). The value of 
this feature is set to the rank of the given paragraph’s 
length if the rank is less than or equal to three. Otherwise, 
the RPL value is set to 0. 
 

In addition, we design the following feature computed 
from the timing information files. 
 
Relative starting time feature (RST). Given a para-
graph p, p’s RST feature is defined as follows: 

ܴܵܶሺ݌ሻ ൌ ඌ
݁݉݅ݐ	݃݊݅ݐݎܽݐݏ	ݏᇱ݌

݁݉݅ݐ	݃݊݅ݐݎܽݐݏ	ݏᇱ݄݌ܽݎ݃ܽݎܽ݌	ݐݏ݈ܽ	݄݁ݐ
ඐ 

4. EXPERIMENTS AND CONCLUSIONS 

4.1 Data set  
Our evaluation dataset consists of 696 song lyrics text 
files from Mojim 1  and their corresponding LRC files 
from KKBOX. The files were annotated by fourteen an-
notators with pop-song background according to Ben-
ward and Saker’s definitions [2]. 

4.2 Results and Conclusion 
We evaluate our result using precision (P), recall (R) and 
F-measure (F): 
 

P ൌ
#	of	sections	predicted	correctly	

#	of	sections	predicted
 

R ൌ
#	of	sections	predicted	correctly	

#	of	sections
 

F ൌ
	2PR	
P ൅ R

 

 
Table 1 shows the experimental results. We can see 

that in the verse, pre-chorus, and chorus the F1 measure 
is over 0.8. In contrast, the bridge’s F1 measure is only 
0.74. There are two possible reasons for this performance 
drop: One, bridge is the least common type of song sec-
tion. Two, we observed that in the confusion matrix the 
entries corresponding to bridge and pre-chorus are high, 
                                                           
1 mojim.com 

so we can assume that their definitions are similar. With a 
larger corpus, we could likely improve the bridge’s F1 
measure  
 
 Precision Recall F1 
V 0.8275  0.8537 0.8404 
P 0.8398  0.8675 0.8534 
C 0.8359 0.8399 0.8379 
B 0.7812 0.7092 0.7435 
ALL  0.8290  0.8327 0.8308 

Table 1. Experimental results 
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